SUPPRESSION OF SPORULATION AND TRANSITION OF
\textit{Bacillus subtilis} SK1 CELLS IN VIABLE BUT UNCULTURABLE STATE
UNDER THE INFLUENCE OF 2,4,6-TRINITROTOLUENE

G.Yu. Yakovleva, N.G. Zakharova, R.E. Davydov, B.M. Kurinenko

Abstract

It has been established that in the absence of exogenous sources (incubation in 0.5\% NaCl solution), a part of the cell population of \textit{Bacillus subtilis} SK1 maintains its vitality and passes on to sporulation. The presence of 2,4,6-trinitrotoluene in the environment of incubation leads to the repression of sporulation. Another part of the cell population turns into viable but unculturable state. From the point of view of the conservation of the species in the conditions of combined toxic and hungry stress, such transition cannot be considered as an alternative to sporulation.

\textbf{Keywords:} 2,4,6-trinitrotoluene, toxicity, repression of sporulation, \textit{Bacillus subtilis}, unculturable state, succession to death.

References

Received
April 15, 2013

Yakovleva Galina Yurevna – PhD in Biology, Associate Professor, Department of Microbiology, Kazan Federal University, Kazan, Russia.
E-mail: Yakovleva_Galina@mail.ru

Zakharova Nataliya Georgievna – PhD in Biology, Associate Professor, Department of Microbiology, Kazan Federal University, Kazan, Russia.

Davydyov Rustam Enverovich – PhD in Biology, Senior Research Fellow, Department of Microbiology, Kazan Federal University, Kazan, Russia.
E-mail: ddv@ksu.ru

Kurinenko Boris Mikhailovich – Doctor of Biology, Professor, Department of Microbiology, Kazan Federal University, Kazan, Russia.
E-mail: Boris.Kurinenko@ksu.ru