Connection of Some Bilevel and Nonlinear Optimization Problems

A. M. Malyshev* and A. S. Strekalovskii**

(Submitted by Ya.I. Zabotin)

Institute of Dynamic Systems and Control Theory, of Siberian Branch of Russian Academy of Sciences,
ul. Lermontova 134, Irkutsk, 664033 Russia

Received October 21, 2010

Abstract—In this paper we reduce a quadratic-linear bilevel optimization problem with a guaranteed solution to a family of bilevel problems in the optimistic statement. Then we reduce the obtained bilevel problems to nonconvex one-level optimization problems and solve the latter by nonconvex optimization methods.

DOI: 10.3103/S1066369X11040104

Keywords and phrases: bilevel optimization problems, guaranteed (pessimistic) solution, nonconvex optimization problems.

1. INTRODUCTION

Various applied problems [1–4] which arise in modeling hierarchical control systems in energetics, economics, ecology, etc. [2] lead to bilevel optimization problems. Usual solutions to the latter problems are optimistic (cooperative) and guaranteed (non-cooperative, pessimistic) ones [1–4]. In the first case one assumes that the interest of the upper level can be coordinated with the actions of the lower level. In the second case such a coordination of interests is absent.

In the last three decades many papers have been devoted to the search of optimistic solutions to bilevel problems [5], and only few ones have been dedicated to the search of a guaranteed solution [6–8]. Note that in bilevel problems even the search of an optimistic solution (which is simpler) is reduced, as usual, to the search of global solutions to nonconvex optimization problems [4], and therefore from the computational point of view it represents a complex problem [9–12]. Here we reduce the considered bilevel problem with a guaranteed solution to a nonconvex optimization problem.

2. PROBLEMS AND THEIR INTERCONNECTIONS

Consider the following quadratic-linear bilevel optimization problem:

\[W(x, \varepsilon) \triangleq \sup_{y} \{ F(x, y) \mid y \in Y_{*}(x, \varepsilon) \} \downarrow \min_{x}, \tag{BP(\varepsilon)} \]

where \(X \triangleq \{ x \in \mathbb{R}^{m} \mid Ax \leq a, x \geq 0 \} \), \(Y(x) \triangleq \{ y \in \mathbb{R}^{n} \mid A_{1}x + B_{1}y \leq b, y \geq 0 \} \), \(F(x, y) \triangleq \frac{1}{2}(x, Cx) + \langle c, x \rangle - \frac{1}{2}(y, C_{1}y) + \langle c_{1}, y \rangle \), \(G(y) \triangleq \langle d, y \rangle \), \(A \in \mathbb{R}^{p \times m} \), \(A_{1} \in \mathbb{R}^{q \times m} \), \(B_{1} \in \mathbb{R}^{q \times n} \), \(C = C^{T} \geq 0 \), \(C_{1} = C_{1}^{T} \geq 0 \), \(c \in \mathbb{R}^{m} \), \(c_{1}, d \in \mathbb{R}^{q} \), \(a \in \mathbb{R}^{p} \), \(b \in \mathbb{R}^{q} \), and \(Y_{*}(x, \varepsilon) \) is the set of \(\varepsilon \)-solutions to the lower level problem.

Here \(F(x, y) \) and \(G(y) \) are efficiency criteria of players of the upper and lower levels, therefore \(W(x, \varepsilon) = \sup_{y} \{ F(x, y) \mid y \in Y_{*}(x, \varepsilon) \} \) is an estimate of the efficiency of the strategy of the upper level player [1, 2].

*E-mail: anton@irk.ru.
**E-mail: strekal@icc.ru.