Dielectric Spectroscopy in Studying Mechanisms of Structure-Forming Oils

1. Introduction

Characteristics of oil as a dispersion system are mainly determined by forming permolecular structures and their properties (geometry, stability, etc.) (Tumanyan, 2000). These properties influence the parameters of processes taking place during oil production in particular during oil filtration in porous media (in the oil-producing reservoir) (Ratov, 1995). Processes of association of oil components molecules limit oil mobility not only in the wall boundary layer (in a bounded state) but in a free space as well. In this case the active role is played by the components of the dispersed phase. They are represented by the associated resins and asphaltene components where asphaltene forms the nucleus while the salvation sphere is composed of different resins fractions in accordance with polarity (Safieva, 1998). However even in case when the content of these components is not big they are able to form dispersed systems. The dispersion ability of such oils is mostly defined by the structural peculiarities of both the dispersion phase components and the content of the dispersion medium of oil dispersion systems. Its influence upon the system is ambiguous as it stipulates for a number of abnormalities in the process of oil formation under the influence of external factors.

So the purpose of this work is to study the peculiarities of oil structure with different composition and to consider the dynamics of its reformation under thermal conditions.

2. Experiment

The dispersion structure oil systems study was made with the help of time dielectric spectroscopy method by the reflectometer Р 5-11, measuring standard line inhomogeneities. The frequency band of the device is 10^4–10^9 Hz. The temperature range during the measurements was 20^0–105^0C. The device was calibrated with the help of the liquid reference method, as a standard we used butanol-1 C/H/O/H (Akhadov, 1999).

As samples under research we chose Tatarstan oilfields different in geological age, composition and microelements (about 40 oils). As a result we obtained dielectric spectra ε''=lg(ε)ε, showing the dependence of its real component ε' and imaginary one ε'' of the complex dielectric permittivity ε on the frequency f of the applied electric field of impulses. The estimation error in determining the parameters for ε' is 3%, for ε'' is 5% (Feldman et al., 1979).

3. Results

Figure 1 presents the experimental dielectric spectra for the two oils of Devonian formation in Abdrakhman’s section in Romashkino oil field. The depositions include hard wax (1–4%), resins and asphaltene elements (18–33%). You can see an obvious maxima in the curves of dielectric permittivity ε''(ω) that is typical for dielectric losses in the substance. They correspond to different types of molecular relaxation processes in oils. The low-frequency maximum at f = (10^8–10^9) Hz is the evidence of the presence of big particles and complexes associates in the system that have the big time relaxation τ. You can refer the formation of resins and asphaltene components the structure of which in different oils has essential differences to this type of the associates.

To interpret the experimental data we used the empirical Debye’s model and Cole and Davidson’s one (Frohlich, 1960),

\[\varepsilon^* = \frac{\varepsilon_0 - \varepsilon_\infty}{1 + i\omega\tau} + \varepsilon_\infty \]

where 0<β<1.

Fig. 1. The experimental dielectric oils spectra: a) Abdrakhman’s section, hole 13948; b) Abdrakhman’s section, hole 714D.

Fig. 2. The dependence of the relaxation times on temperature. a) Abdrakhman’s section, hole 13948; b) Abdrakhman’s section, hole 714D.

Fig. 3. The dependence of the static dielectric permittivity ε0 on temperature: a) Abdrakhman’s section, hole 13948; b) Abdrakhman’s section, hole 714D.
The factor β in Cole and Davidson’s model describes primarily not the spherical geometry of the associates and agglomerate of particles having been formed by long-time and short-time interactions. If $\beta=1$ the formula is transformed into Debye’s equation.

4. Discussion

The analysis of dielectric oil spectra from Abdrahman’s section with thermal changes let us reveal the distinctive peculiarities in the dynamics of relaxation processes (Fig. 2, 3).

The fall in the time of relaxation τ_1 (Fig. 2b) with the corresponding decrease in static dielectric permittivity informing us about the oil system polarity (Fig. 3b) is a result of the decay of the oil dispersed phase aggregated complex from hole 714 D.

The result of such decay is a phase transition with the transfiguration of the system into the molecular solution. The dynamics of the time relaxation τ_1 behavior and dielectric permittivity for oils from hole 13948 (Fig. 2a, 3a) shows that with the temperature increase it has a reverse character that is the evidence of the associate structuring in the dispersed phase ending in forming the agglomerate that transforms the system into the fine-dispersed state.

Thus, with temperatures $T>40^\circ\text{C}$ the given oils endure phase transitions resulting in changing its aggregative state. Such behavior is caused by the high molecular alkanes acting either as combining the associate ‘mediators’ melting of which promotes the aggregated combinations destruction or as a phase of crystallization that is the associate nucleus where the temperature increase leads to further associating of the corresponding aggregated complex. Unlike crude oils from Devonian period that are the dispersed systems with light or average corresponding aggregated complex. Unlike crude oils from Devonian period that are the dispersed systems with light or average concentration oils with high viscosity from Carbon formations are dispersed systems with high concentration.

Due to the character of dielectric spectra and the dynamics of changing dielectric parameters τ_1, ε_0 oils with high viscosity were divided into groups. (Table).

Group 1 is represented by the light-gravity oils from Podgorny field. It has relatively small content of high-molecular components. The process of association in this group of oils is impulsive in a temperature range of 36 – 50 $^\circ\text{C}$. The time relaxation increase τ_1 of the most volumetric part of the dispersed phase and statistic dielectric permittivity ε_0 responsible for the general system polarity makes it obvious (Fig. 4a, 5a).

The formation of big asphaltene aggregations takes place in the case of resins molecular ‘desorption’ from the asphaltene surface. The energy of activation of the relaxation process for the first group oils is characterized by the smallest values. Such oils behavior can be explained by the weak intermolecular bonds in asphaltenes with the low concentration of structures containing vanadium. Similar association processes with the temperature increase leading to the time

<table>
<thead>
<tr>
<th>Gr num</th>
<th>Rel. content of samples in the gr.</th>
<th>Contents, mass%</th>
<th>V/A $\times 10^3$</th>
<th>ε_0 kilojoule/mole</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12%</td>
<td>(0.4 – 5)</td>
<td>(0.0071 – 0.02)</td>
<td>(1.54 – 1.9)</td>
</tr>
<tr>
<td>2</td>
<td>32%</td>
<td>(6.4 – 13.6)</td>
<td>(0.022 – 0.048)</td>
<td>(1.92 – 3.77)</td>
</tr>
<tr>
<td>3</td>
<td>29%</td>
<td>(5.5 – 6.6)</td>
<td>(0.02 – 0.04)</td>
<td>(4.0 – 4.8)</td>
</tr>
<tr>
<td>4</td>
<td>27%</td>
<td>(6.8 – 16.6)</td>
<td>(0.048 –)</td>
<td>>4.2</td>
</tr>
</tbody>
</table>

Table. Composition characteristics in the groups of high-viscosity oils in Tatarstan fields from Carbon formations.

Fig. 4. The temperature dependences of time relaxations for oils: a) Podgorny field, hole 25; b) Northern field, hole 3186.

Fig. 5. The temperature dependences of the static dielectric permittivity for oils: a) Podgorny field, hole 25; b) Northern field, hole 3186.

relaxation τ_1 increase (Fig. 4b) are mentioned for oils of group 2 and 3 (Northern field). However, dielectric permittivity ε_0 depends on temperature for oils of group 2 (Fig. 5b) has the extreme character. You can observe the monotonous growth of ε_0 up to 50$^\circ\text{C}$ and afterwards up to 100$^\circ\text{C}$ – its fall. The general polarity decrease of the system can be stipulated for the dispersed phase dipole moment decrease due to the asphaltene molecules structuring into aggregations primarily with spherical form. Such geometry of a macromolecule forms the low dipole moment of the associate in total due to the fact that the asphaltene and resins components dipole moments have the opposite directions. The oil system polarity decreases in result. The energy of activation in forming the associates of spherical forms is the highest.

The mixture in the dispersed phase of the oils from group 2 has the highest asphaltene content with the average values of vanadium. The increasing value of the ratio V/A in oils from group 3 with less asphaltene content leads to the formation of the associates with higher permittivity (Fig. 5b), weaker structure, broken sphericity.

The analysis of dielectric parameters of oils from group 4 (Northern and Summer fields) characterized by the highest asphaltene and vanadium content (Table) showed the presence of volumetric structures in a dispersed phase having the constant relaxation time τ_1 in the temperature interval under research. Probably the high concentration of vanadium and vanadyl and porphyrinic complexes including the asphaltene associates determine the impossibility of the phase transition that is responsible for changes in solvation.

Conclusion

Thus, the study of oils with different compositions by the dielectric spectroscopy method let us reveal the distinctive peculiarities of the associates – forming processes in a dispersed phase with thermal changes. The obtained data proved the elaboration of differential best conditions of external action (temperature, physical influence, chemical reagents) for oils with different structures in technological processes of oil production, transportation and refining.

References

